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Introduction

Probiotics are a natural class of immune modulators 
which might decrease the reliance on synthetic anti-
microbials. Therefore, there is an urgent need to 
explore the prophylactic and therapeutic applica-
tions of probiotics. Lactic acid bacteria (LAB) are 
widely used as probiotics.1 LAB strains present in 
many foods such as yogurt are normal components 
of intestinal microflora and help maintain a healthy 
balance of probiotic bacteria while reducing patho-
genic bacteria.2,3 In addition, LABs are frequently 
used as probiotics to favor some biological func-
tions in the host. Our work4 and that of others 
showed that LABs have the ability to exert antitu-
mor and antiviral activity.5–9 However the mecha-
nisms underlying their effects have not been fully 
examined. The immune modulatory action of LAB 
is a possible mechanism by which LAB exerts its 
effects against cancer and viral infection. This is 

supported by the fact that LAB strains can induce 
adjuvant effects including enhancement of natural 
killer (NK) and cytotoxic T cell activities.10–13 
Earlier reports also suggest that treatment with 
LAB caused an increase in the number of IgA pro-
ducing cells as well as an increase in the specific 
and total serum IgA titer.14,15 Numerous studies 
have investigated the effect of LAB on dendritic 
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cells (DCs). However, there is virtually nothing 
known regarding the effect of PFT on the immune 
system cells. PFT is a natural mixture composed 
primarily of Lactobacillus kefiri P-IF, a specific 
strain of L. kefiri with unique growth characteris-
tics. Furthermore it also contains traces of three 
yeast strains, Kazachstania turicensis, Kazachstania 
unispora, and Kluyveromyces marxianus.16 This 
unique composition of PFT is what is responsible 
for its enhanced immune modulatory activities 
compared to other LAB strains.

DCs are the professional antigen presenting cells 
(APCs) which bridge the innate and adaptive immu-
nity because of their unique ability to sense patho-
gens and initiate immunity. These cells possess 
several sensors of pathogens known as pattern rec-
ognition receptors (PRRs). These include Toll like 
receptors (TLRs), Nod-like receptors, and C-type 
lectin receptors.17,18 Depending on the microbial 
stimulus encountered, DCs secrete cytokines, 
chemokines, and prime naive T cells toward Th1, 
Th2, Treg, TH17, and TFH cell responses.19–22 DCs 
residing in the gut regularly encounter non-patho-
genic organisms including Lactobacillus species23,24 
which may modulate DC properties, including their 
ability to activate specific immune responses at 
mucosal sites.23–25 A balance of DC stimulation and 
tolerance after an encounter with Lactobacillus cells 
in the gut may be important to maintain the homeo-
stasis required for symbiotic bacteria to perform 
their critical functions in host nutrition, intestinal 
permeability, and protection against foreign patho-
genic microbes.24 The present study was undertaken 
to examine the potential stimulatory effects of PFT 
on DC function as determined by modulating the 
expression of markers CD80, CD86, and HLA-DR, 
and the secretion of cytokines. In addition, the effects 
of PFT-treated DCs on priming CD4+T cells to 
secrete cytokines, and the enhancement of cytotoxic 
reactivity of CD8+T cells were also examined. The 
results indicate that PFT may function as a natural 
adjuvant for DC activation and may suggest its use 
in DC-based vaccine strategies against viral infec-
tions and cancer.

Materials and methods

Antibodies and reagents

The following anti-human antibodies were used: 
CD11c APC (Clone B-ly6), CD80 PE (Clone 
L307.4),  CD86 PE (Clone 2331 (FUN-1)), 
HLADR PerCP (Clone L243 (G46-6)), CD4 PerCP 

(Clone SK3), CD8 PerCP, CD103 PE, CD107a PE, 
and Granzyme B Alexa 647 were all from BD 
Biosciences (San Jose, CA, USA). An isotype  
antibody was used as a negative control (BD 
Biosciences, San Jose, CA, USA). FACS analysis-
flow cytometry was performed using FACScalibur 
(Becton-Dickenson, San Jose, CA, USA), and ana-
lyzed using FlowJo software (Tree Star, Inc.).

Probiotics fermentation technology (PFT) kefir 
grain product

PFT is a mixture that mainly contains (~90%) a 
freeze-dried form of heat-killed L. kefiri P-IF; it is 
a specific strain of LAB that has a unique DNA 
sequence and PET scans show a 99.6% homology 
with regular kefiries. PFT also contains ~2–3% of 
each bacterial strain, Lactobacillus kefiri P-B1, 
and three yeast strains, Kazachstania turicensis, 
Kazachstania unispora, and Kluyveromyces marx-
ianus.16 PFT was provided by Paitos Co., Ltd. 
Yokohama, Kanagawa, Japan.

Isolation and culture of monocyte-derived DCs

Monocyte-derived DCs were prepared essen-
tially as described previously.19,20 Briefly, 
peripheral blood mononuclear cells (PBMC) 
from normal healthy donors (approved by the 
Institutional Review Board [IRB], Charles Drew 
University) were separated over Ficoll-hypaque 
density gradient centrifugation. The cells were 
allowed to adhere to culture plates for 2 h. Non-
adherent cells were subsequently removed. The 
adherent monocytes were cultured for 6 days 
under a humidified atmosphere of 5% CO2  
at 37°C in RPMI 1640 supplemented with 10% 
FBS, 1 mM glutamine, 100 U/mL penicillin, 100 
μg/mL streptomycin, human granulocyte-mac-
rophage colony stimulating factor (GM-CSF) at 
50 ng/mL (Peprotech, Rocky Hill, NJ, USA), and 
10 ng/mL recombinant human IL-4 (Peprotech). 
Half of the medium was replaced every 2 days 
with fresh medium and DCs were collected after 
6 days. The purity of the DCs obtained was 
>95%. DCs were subsequently pulsed with PFT 
(50 and 100 μg/mL) for 24 h.

Peripheral blood DCs (Blood DCs) were iso-
lated from PBMCs by PanDC isolation kits from 
Stem Cell Technologies (Vancouver, BC, Canada). 
Approximately 0.6 to 1 ×106 PanDC were recov-
ered from 100 ×106 PBMCs.
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DC phenotyping

The expression of cell surface markers was  
determined by flow cytometry. Briefly, gated 
CD11c+HLADR+DCs were analyzed for the 
expression of CD80, CD86, and HLADR with the 
appropriate antibodies supplied by BD Pharmingen 
(San Diego, CA, USA).

Cytokine production by DCs

Monocyte derived DCs were incubated with PFT 
(50 and 100 μg/mL) for 24 h. The supernatants 
were collected and stored at −70°C until analyzed. 
The cytokines IL-6, IL-10, TNF-α, IL-1β (BD 
Pharmingen) in the supernatants were measured by 
specific ELISA kits as per the manufacturer’s pro-
tocol. Pan DC supernatant were collected and 
assessed for IL29 and IFNα by specific ELISAs 
(RnDsystems, Minneapolis, MN, USA).

DC-CD4+T cells

Allogenic CD4+T cells were purified by negative 
selection using a magnetic bead-based kit from 
Stem Cell Technologies. Allogenic CD4+T cells 
were cultured with DCs that were stimulated with 
PFT (50 and 100 μg/mL) for 24 h as above. The 
DC-CD4+T were co-cultured for 5 days in a U 
bottom 96-well plate. The ratio DC: CD4+T cells 
was 1:5 (2×104: 1×105). At the end of 5 days the 
supernatant was collected and kept at −70°C. 
Cytokines IFN-γ, IL-10, and TNF-α were detected 
using a specific ELISA kit (BD Pharmingen).

Blood DC-CD8+T cells

Allogenic CD8+T cells were enriched by negative 
selection using a magnetic bead-based kit from 
Stem Cell Technologies. PFT-stimulated Blood 
DCs were cultured with CD8+T cells at a 1:10 
ratio in 96-well plates and kept for 7 days for 
CD8+T cells to differentiate into cytotoxic and 
resident CD8+T cells. After 7 days the supernatant 
was collected and cells were stained for the  
surface markers CD103 (tissue resident CD8+T 
cells) and CD107a and intracellular Granzyme-B 
(cytotoxic CD8+T cell) as per standard protocol by 
BD Biosciences.

Statistics

All of the experiments were repeated with samples 
from four to seven individual subjects. KrukerWallis 

(ANOVA) with post Dunn tests were used to calcu-
late the statistical significance using Graph Pad 
Prism software. The level of significance was set at 
P <0.05.

Results

PFT induces maturation of moDCs

Monocyte derived DCs were incubated in the pres-
ence or absence of PFT for 24 h and the expression 
and density of maturation markers was determined 
by flow cytometry. A representative cytofluoro-
graph is shown in Figure 1a. PFT caused an 
increase in the expression of DC surface co-stimu-
latory and maturation markers CD80, CD86, and 
HLADR. The magnitude of expression was dose 
dependent. Data in Figure 1b show the density of 
mean fluorescent intensity (MFI) of CD80, CD86, 
and HLADR in DCs at baseline values and the lev-
els post-treatment with PFT. Treatment with PFT 
significantly (P <0.01) upregulated the expression 
of CD80 and CD86 markers as compared with 
untreated DCs.

PFT induces production of cytokines by moDCs

Data in Figure 2 show that PFT induced the pro-
duction of cytokines IL-10, IL-6, TNF-α, and IL-1β 
in DCs. The effect of PFT was significant (P <0.05) 
except for IL-1β as compared to moDCs alone.

PFT activated moDCs prime CD4+T cells and 
secrete IFN-γ, IL10, and TNF-α

Data in Figure 3 show that PFT-treated moDCs 
primed CD4+T cells to secrete several cytokines: 
IFN-γ, IL10, and TNF-α. PFT treatment resulted 
in significant (P <0.05) increased levels of IFN-γ, 
IL10, and TNF-α as compared to DCs-CD4+T 
cells alone. The secretion of cytokines increased 
as follows: IFN- γ by three- to four-fold, IL-10 by 
1.5- to 1.7-fold, and TNF-α by three-fold.

PFT induces antiviral cytokines IFN-λ(IL29) and 
IFN-α in Blood DCs

The production of type I and type III interferons by 
DCs is one of the most potent of the antiviral actions 
exerted by DCs. Among the DC subsets, plasmacy-
toid DCs and circulating CD141+ DCs are consid-
ered the primary producers of interferons. MoDCs 
can also produce interferons but at much lower 
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levels. Therefore, to determine whether or not PFT 
induces the production of antiviral cytokines, periph-
eral blood DCs were stimulated with PFT at 50 and 
100 μg/mL for 24 h and production of IL-29 and 
IFN-α was determined by ELISA. Data in Figure 4 
show that PFT treatment was effective in inducing 
secretion of IFN-λ(IL-29) and IFN-α (P <0.05).

PFT stimulated Blood DCs induce the 
expression of CD103 and CD107a, as well as 
Granzyme-B in CD8+T cells

Blood DCs stimulated with PFT for 24 h were cul-
tured with allogenic CD8+T cells for 7 days. 
Subsequently, the cells were stained with CD103, a 
marker of resident/regulatory CD8+T cells, and 
CD107a as well as Granzyme-B, markers for cyto-
toxic T cells. Data in Figure 5 show that PFT acti-
vated DCs were efficient in upregulating the 
expression of CD103 and CD107a, as well as 
increasing the granular content of Granzyme-B in 
CD8+T cells.

Discussion
PFT is a natural mixture composed primarily of 
Lactobacillus kefiri P-IF. Results of the current 
study revealed the ability of PFT to activate 
human DCs as indicated by upregulation of the 
surface expression of co-stimulatory molecules 
CD80, CD86, and HLADR. In addition, PFT 
treatment stimulated DCs to secrete increased 
levels of cytokines such as interleukins (IL-6, 
IL-10, and IL-1β) and TNF-α. These data are in 
accordance with work by others who showed that 
other Lactobacillus species induced activation 
and maturation of myeloid and bone marrow 
DCs.26,27 Furthermore, other studies with murine 
bone marrow derived DCs also reported produc-
tion of significant levels of IL-6, TNF-α, and 
IL-10 post-treatment with LAB species.28 
Furthermore, Saccharomyces boulardii and 
Bacillus subtilis B10 also caused increased pro-
duction of several cytokines including IL-1β and 
IL-10 from chicken bone marrow DCs.27 On the 
other hand, other Lactobacillus species-exposed 

Figure 1. (a, b) Effect of PFT on moDC co-stimulatory and maturation markers CD80, CD86, and HLADR. Monocyte-derived 
DCs were treated for 24 h with PFT (50 and 100 µg/mL). Isotype antibody was used as a negative control. Expression of cell surface 
markers was determined by flow cytometry. (a) One representative cytofluorograph is shown from four individual experiments. 
(b) The density of mean florescent intensity (MFI) of CD80, CD86, and HLADR in DCs in the absence or presence of PFT. Data 
represent the mean ± SE of four experiments; ★P <0.01 as compared to DCs alone.
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human myeloid DCs in vitro induced high levels 
of IL-12 and IL-18, but not IL-10,26 suggesting 
that IL-10 production may depend on the LAB 
species. Earlier studies showed that several 

probiotics cell components are responsible for 
induction of IL-10 production. These include; 
genomic DNA from bifidobacteria or lactoba-
cilli,29 soluble or insoluble cell preparations from 

Figure 2. Effect of PFT on cytokine production by moDCs. Immature DCs were incubated with PFT (50 and 100 µg/mL) for 24 h. 
Supernatants were collected and the levels of IL-10, IL-6, TNF-α, and IL-1β were measured by specific ELISA kits. The data are the 
mean ± SD from seven individual experiments; ★P <0.05 as compared to DCs alone.

Figure 3. PFT stimulated DCs prime regulatory type CD4+T cells and secrete IFN-γ, IL-10, and TNF-α. The data are the mean ± 
SD from five individual experiments; ★P <0.05 as compared to DCs-CD4+T cells alone.
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Figure 5. PFT stimulated DCs prime activated CD8+T cells. DCs were stimulated with PFT (50 and 100 µg/mL) for 24 h and 
then cultured with CD8+T cells for 7 days. CD8+T cells were stained with CD103, CD107a, and Granzyme-B. One representative 
experiment is shown from three individual experiments.

Figure 4. Blood DCs were stimulated with PFT at concentrations of 50 and 100 µg/mL for 24 h. Type I and type III interferons, 
IL29 and IFN-α, were detected by ELISA. The data are the mean ± SD from four individual experiments; ★P <0.05 as compared to 
DCs alone.
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bifidobacteria,30,31 and TA/LTA from lactoba-
cilli.32 LAB has demonstrated the ability to induce 
IL-10 production by different mechanisms. For 
example, S-layer protein A (SlpA) released from 
Lactobacillus acidophilus induces IL-10 produc-
tion in DCs via a direct interaction of SlpA with 
DC-SIGN.33 In the current study, PFT induces both 
pro- and anti-inflammatory cytokines from DCs.

The mechanism by which PFT induces its effect 
on DC is not fully elucidated. TLR-2 has been 
shown to be a signal transducer for cells activated 
by peptidoglycan, lipoteichoic acid, bacterial lipo-
protein, and LPS.34 Other Lactobacillus species 
upregulate expression of TLR-2 transcripts.26 
These data may suggest that PFT may deliver sig-
nals through TLR-2, thereby promoting the activa-
tion of DCs. Further studies also showed that the 
extracellular proteins secreted by Bifidobacterium 
breve C50 can interact with DCs via TLR-2.35

In this study, PFT-stimulated moDCs induced 
activation of CD4+T which subsequently leads to 
production of IFN-γ, IL-10, and TNF-α. These data 
are in agreement with work by Mohamadzadeh 
et al. who showed that activation of moDCs by 
other Lactobacillus-species also induced prolifera-
tion of autologous CD4+ and CD8+ T cells and 
induced secretion of IFN-γ.26

Taken together, moDCs activated with PFT 
secrete increased levels of inflammatory TNF-α 
and IL-6 cytokines and anti-inflammatory cytokine 
IL-10. Additionally, these moDCs prime multi-
functional CD4+T cells to secrete IFN-γ, IL-10, 
and TNF-α.

Data of the current study shows interesting 
activity of PFT on Blood DCs, as indicated by its 
ability to activate them to secrete IFN-α and IL-29 
and exhibits the profile of an antiviral, suggesting 
its possible role as an antiviral agent. Recent  
studies showed intake of yogurt fermented with  
L. lactis JCM5805 resulted in suppression in the 
risk of morbidity from the common cold, which 
was associated with the activation of human pDCs 
activity and increased levels of IFNs in vivo.8

IFN-λ (IL-29) is the main cytokine of the type 
III IFNs family produced in humans and its main 
biological function is antiviral activity at the 
mucosal surfaces. IFN-λ exerts several biological 
functions, such as induction of anti-proliferative 
and antitumor activities,36,37 as well as immu-
nomodulatory effects, including induction of pro-
liferation of T cells.38 Blood DCs also modulate 

CD8+T cell responses via increased expression of 
markers of CTLs, CD107a, and Granzyme-B 
expression. CD8+T cells expressing CD107a and 
Granzyme-B are hallmarks for cytotoxic T 
cells39,40 which help the eradication of tumor cells 
and viral infected cells. Furthermore, CD103+ 
CD8+T cells are resident CD8+T cells since they 
express CD103. CD103+ CD8+T cells display anti-
cancer activity.41 Recent studies by Wu et al. 
showed that CD103+ CD8+ mucosal T cells accu-
mulate in tumors, and elicit an increase in cancer 
necrosis and prevent cancer progression in vivo in 
a humanized mouse model of breast cancer. 
CD103+ CD8+ mucosal T cells induced by DCs 
were also able to reject established cancer.41

Our results suggest that PFT functions as a natu-
ral adjuvant for DC activation and thus may be 
used in DC-based vaccine strategies against infec-
tions and cancer. Further research is needed to con-
firm the phenomenon.
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